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Abstract 
Integrating/assimilating satellite ocean color (OC) fields (chlorophyll-a, Kd490, KdPAR) in 
NOAA’s operational ocean models requires scientifically consistent and robust techniques to 
address  temporal and spatial gaps  in data, especially gaps  longer than a few days.  In this 
work, we introduce one possible approach based on a Neural Network (NN) gap-filling 
technique, linking OC variability, which is primarily driven by biological processes, with the 
physical processes of the upper ocean.  A NN method for correlating satellite OC fields with 
other assimilated satellite and in situ observations:  a) instigates fewer assimilation errors (since 
the inputs to the NN are already being assimilated) and b) reduces reliance on sparse in situ OC 
observations.  In this study, satellite-derived surface variables (sea-surface temperature (SST), 
sea-surface height (SSH), and sea-surface salinity (SSS) fields) and gridded ARGO salinity and 
temperature profiles, from 0 to 75m depth, are employed as signatures of upper-ocean 
dynamics.  Chlorophyll-a (Chl-a) fields from NOAA’s operational Visible Imaging Infrared 
Radiometer Suite (VIIRS) are used for NN developments, as well as NOAA SSH and SST 
fields and NASA Aquarius mission SSS fields.  The OC data correlations with the satellite 
SSH/SST/SSS fields are spatially and temporally dependent.  The NN technique is trained using 
data for two years (2012 and 2013) and tested on the remaining year (2014).  Results are 
assessed using the root-mean-square error (RMSE) and cross-correlations between observed OC 
fields and NN output.  To reduce the impact of noise in the data while obtaining a stable 
computation of the NN Jacobian for sensitivity studies, an ensemble of NN with different 
weights is constructed.  The results for the ensemble mean are compared with those for a single 
NN.  The long-term objectives with respect to these NN efforts are to significantly expand the 
utility and use of satellite ocean color fields (Chl-a, Kd490, Kdpar) by using neural network 
techniques to 1) develop complete and consistent global ocean color fields using satellite 
observations, addressing gaps, such as those resulting from swath ground track separation, 
obscured areas, and satellite data loss and 2) statistically predict satellite-derived ocean color 
fields for numerical prediction applications.  This new gap-filling capability will enable the 
assimilation of near-real-time (NRT) ocean color data into NOAA’s operational numerical 
modeling to address a bio-physical feedback process that is particularly important to ocean-
atmosphere coupled modeling.  The assimilation of ocean color data also drives/constrains 
modeled physical-biogeochemical processes that underlie ecological forecasting.  Efforts to 
incorporate biogeochemical components into NCEP operational global ocean models have 
already commenced.  While this note details preliminary work, a subsequent optimal 
configuration of the NN technique will be assessed using extensive experimentation, sensitivity 
tests, statistical metrics, using ocean modeling for validation. 
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List of Acronyms 

ARGO 
A system for observing temperature, salinity, and currents profiles in 

Earth’s oceans 
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SST Sea Surface Temperature 

SSH Height 

SSS Sea Surface Salinity 
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5 
 

I. Introduction 
Operational integration/assimilation of operational ocean color (OC) fields (chlorophyll, Kd490, 

KdPAR) into ocean models has three fundamental requirements/conditions:   

1. gaps in the observations, spatial and temporal, need to be filled.  

2. data assimilation must be for a predicted parameter; and  

3. the data being assimilated must have a long data record to facilitate compilation of a 

robust statistical database spanning multiple seasons.   

A new approach, presented here, aims to significantly expand the utility and use of Joint Polar 

Satellite System (JPSS) Visible Infrared Imaging Radiometer Suite (VIIRS) satellite OC fields 

(chlorophyll-a (Chl-a), Kd490, KdPAR) by using neural network (NN) techniques to fill spatial 

and temporal gaps, thereby supporting data assimilation.  This approach permits:  

• developing complete and consistent long-term global OC fields from satellite and in situ 

observations, addressing gaps, such as those resulting from swath ground track 

separation, obscured areas, and satellite data loss and  

• statistically predicting satellite-derived OC fields for numerical prediction applications, 

enabling the assimilation of near-real-time (NRT) OC data into numerical models.  

• The neural NN technique linkages between a signature of biological processes, i.e. 

satellite-derived OC fields, and signatures of upper-ocean physical processes, i.e. other 

satellite-derived and in situ physical variables.  The optimal configuration of this 

preliminary NN technique setup was assessed using extensive experimentation, 

sensitivity tests, and statistical metrics.  The final NN simulated OC will be examined 

using global and local statistical metrics and validated with global ocean model 

simulations.   
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Satellite remote-sensing of ocean color parameters provides the only means for broadly 

observing the biological component of the world’s oceans.  Consequently, this capability must 

be exploited for analyzing and predicting ocean bio-physical processes and establishing a 

linkage to biological components of ocean ecological forecasts.  The assimilation of ocean color 

data also drives/constrains the modeling of physical-biogeochemical processes that underlie 

ecological forecasting.  The three principal components of this OC NN effort are: a) developing 

an appropriate neural network for estimating ocean color parameters (chlorophyll-a, K490,  

KPAR); b) applying the ocean color neural network to create consistent ocean color fields 

bridging multiple satellite ocean color missions; and c) integrating a blended composite of near-

real-time ocean color data and the neural network estimates (capturing low-frequency large-

scale variability) into NOAA’s operational ocean models.  This discussion focuses on the first 

element, developing an appropriate gap-filling NN for estimating ocean color parameters by 

correlating ocean color fields to physical signatures of upper ocean processes.  

 
I.1  Using  Blended Composited Gap-Filled Ocean Color Data 

I.1.1  Use in Data  in Ocean and Coupled Modeling at NOAA/NCEP 

The absorption of solar radiation by photosynthesis, estimated by satellite measurements of 

chlorophyll-a/K490/KPAR, can significantly modify the near-surface thermal profile. Such 

perturbations of the near-surface thermal profile can affect air-sea heat flux, thereby driving a 

bio-physical feedback to the atmosphere through changes in sea-surface temperature (SST), and 

is a significant input for coupled ocean-atmosphere numerical modeling predictions, particularly 

for longer time scales.  Numerous modeling studies attest to the importance of including a solar 

radiation penetration-absorption scheme to better represent near-surface conditions, processes, 

large-scale oceanic heat transport, and coupling with the atmosphere, e.g. Anderson et al. 
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(2009), Ballabrera-Poy et al. (2007), Morel and Antoine (1994), Murtugudde et al. (2002), and 

Zhang et al. (2009).  Ongoing efforts aim to use near-real-time VIIRS ocean color fields in 

NOAA’s operational Real-Time Ocean Forecast System (RTOFS) (Mehra et al., 2011 and 

operational seasonal-interannual Global Ocean Data Assimilation System (GODAS; Behringer, 

2007), (Saha, et al., 2013), the ocean component of NOAA’s coupled Climate Forecast System 

(CFS).   The work to date has established two key points:  1) the ocean responds vigorously to 

ocean color variability at all time scales and 2) daily VIIRS ocean color fields show significant 

sub-seasonal to seasonal variability. There are indications that ocean and coupled simulations 

are sensitive to changes in the prescribed ocean color fields, thus requiring the ocean color data 

stream to be of long duration, consistent, gap-filled, and free of sharp and/or persistent 

erroneous trends.  

I.1.2  Use in biogeochemical modeling at NOAA/NCEP 

The NOAA Ecological Forecasting Roadmap for 2015-2019 includes “…providing dependable, 

higher-quality forecast products….”  Supporting this mission, a prototype foundational 

biogeochemical (BGC) modeling capability for NOAA’s global RTOFS is being developed, 

aiming to use satellite ocean color data to reliably provide critical data fields for ecological 

forecasts.  

Scientific objectives include: 1) improving NWS forecasting skill at short-term and seasonal 

time scales by employing coupled BGC-physical modeling framework (e.g., biological heating 

on the upper-ocean thermal structure); 2) investigating effects of the direct assimilation of 

VIIRS products (Chl-a) in conjunction with radiative transfer computations using an existing 

validated algorithm (Lee et al. 2006); 3) providing scenario-based forecasting to predict system 

responses to potential changes by drivers (natural or through ecosystem management decisions) 
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using biologically and physically coupled modeling; and 4) assessing the effects of carbon flux 

between the atmosphere and the ocean and subsequent changes in the ocean acidity through 

marine biogeochemical processes.  

Figure 1 depicts the three components of the coupled system:  the atmospheric model, the 

Global Forecast System; the Global Data Assimilation System; coupled with the oceanic 

component, RTOFS-Global embedding biogeochemical modeling component (see the box in 

red color). The VIIRS ocean color observations will update and constrain both the physical 

(bio-physical feedback) and biogeochemical (primary productivity) components through data 

assimilation. The radiative transfer algorithm is a 2-band scheme, a visible band and a red band. 

The required inputs for this scheme are the total absorption coefficient at the surface for the 490 

nm waveband (a490, m-1) and the total backscattering coefficient at the surface at the same 

waveband (bb490, m-1).  Both of these inherent optical properties are functions of chlorophyll 

and pure water.    

The ocean physics component, RTOFS-Global runs daily, providing NCEP’s “ocean weather” 

forecasts.  The computational core of this ocean modeling system is an eddy-resolving 1/12th-

degree HYbrid Coordinate Ocean Model with cylindrical and recti-linear coordinates in a 

Mercator projection and an Arctic bipolar patch. The latest code has 41 vertical layers which 

follow isopycnals in the deep ocean, z-levels near the surface, and terrain-following σ-

coordinates near coastal areas. The vertical mixing scheme employs the K-Profile 

Parameterization (KPP; Large et al., 1994). RTOFS-global is re-initialized every day using 

ocean initial conditions from the Navy’s Coupled Ocean Data Assimilation system (Cummings, 

2005).  
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As a biogeochemical component of the coupled system, an existing well validated global BGC 

model (Gregg, 2002) is being coupled to RTOFS-Global. There are two sub-module 

components in the BGC model: ecosystem; and carbon component. Ecosystem component 

includes four phytoplankton groups, four nutrient groups, a single herbivore group, and three 

detrital pools. The phytoplankton groups are different functional types with maximum growth, 

sinking rates, nutrient requirements, and optical properties. Nitrate, regenerated ammonium, 

silica and iron are included as nutrient sources, and detritus were parameterized to simulate 

sinking, and remineralization of organic materials. Carbon component involves carbon cycling 

for dissolved organic carbon and dissolved inorganic carbon. While this biogeochemical model 

 

 

Figure 1.  Schematic diagram for VIIRS ocean color data assimilation into NOAA’s 
coupled ocean, atmosphere, data assimilation, and biogeochemical modules. 
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was originally developed for validating SeaWiFS data, our BGC model will hire data 

assimilative capabilities of VIIRS ocean color products in order to estimate primary 

productivity (photosynthetic capacity) of global ocean which indicates dynamic states of CO2 in 

water and at the air-sea interface. The assimilation of VIIRS OC fields in ocean biogeochemical 

models will be accomplished by nudging Chl-a values in the top layer of the model towards a 

Ch-al analysis field. This common procedure is equivalent to the addition of a corrective Chl-a 

flux by nudging modeled values toward observed values.  Mechanisms for Chl-a flux within 

water column include turbulent mixing, advection, and local biogeochemical processes, such as 

uptake and grazing.   

 
I.2 NN Ocean Color Near-Real-Time Estimates 

Neural network NRT ocean color estimates are aimed at:  1) gap-filling, as needed, 2) creating 

blended analyses in conjunction with VIIRS observations, and 3) creating an extended 

consistent ocean color data record spanning multiple satellite missions.  While the results shown 

are preliminary, the NN output from the final configuration will be assessed using global and 

local statistical metrics and validated with observations and global ocean model simulations. So 

far, preliminary results indicate that the NN technique has great promise for spatially and 

temporally filling gaps in OC fields; therefore, we will extend our current work into statistical 

prediction of OC fields in the near future.  The vision is a weighted blend of NN estimates and 

NRT VIIRS data for ocean model initialization and assimilation for i) nowcasts and one to two 

week ocean forecasts by NOAA’s operational RTOFS, and ii) reanalysis, establishing the best 

ocean initial conditions by NOAA’s operational seasonal-interannual Ccoupled Climate 

Forecast System Reanalysis (CFSR)/GODAS.  These VIIRS-based NN ocean color analyses 

and predictions will be assimilated when computing NRT and extended (three- to four-week) 
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ocean and coupled weather forecasts.  The concept for blending is to retain high-frequency 

small-scale information from the VIIRS observations while ensuring the inclusion of the low-

frequency large-scale information from NN estimates.  This blending methodology allows the 

creation of a consistent time series that spans multiple satellite missions.  The NRT VIIRS data 

stream serves two purposes:  1) creation of a blended analysis for use by the ocean and 

biogeochemical models and 2) update training for the NN on a periodic basis. 

Successful neural network applications for satellite remote sensing, meteorology, and 

oceanography have steadily increased over the last two decades (Camps-Valls and Bruzzone, 

2009; Krasnopolsky, 2013).  These NN applications address issues such as classification, 

feature extraction and tracking, pattern recognition, change detection, solving forward and 

inverse problems, as well as for filling missing data gaps in the measurement time series 

(Hidalgo et al., 1995; Arena and Puca, 2004; Makarynskyy and Makarynska, 2007).  Peres et al. 

(2015) used NNs to extend records of observations. Multiple NN applications aim to solve 

forward and inverse problem in satellite OC remote sensing (Dzwonkowskia and Yan, 2005, 

and references there).  NNs have also been applied to merge data collected by different 

instruments (Kwiatkowska and Fargion 2002).  This work presents a new NN approach that 

serves to fill spatial and temporal gaps in satellite-derived OC fields by using satellite and in 

situ observations of related, but independently derived, information about the physical state of 

the ocean’s upper layer.  Section II of this paper presents the new NN methodology.  Section III 

describes the data used for this study.  Section IV introduces the results, with,Sections V and VI 

providing discussion and conclusions. 
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II. Methodology 

II.1  Neural Network background 

NNs are very generic, accurate, and convenient mathematical models that emulate complicated 

nonlinear input/output relationships through statistical learning algorithms (Hsieh, 2009; 

Krasnopolsky, 2013).  NNs approximate the transfer functions (mappings) between a large 

number of possibly-interconnected inputs and multiple outputs, even for nonlinear and not-well-

known relationships.  NN can be applied to any problem that can be formulated as a mapping 

(input vector, X, versus output vector, Y, dependence).   

Mapping, Y (output) as a function of X (inputs) can be symbolically written as:  

where M denotes the mapping, n is the dimensionality of the input space (number of emulating 

NN inputs), and m is the dimensionality of the output space (number of emulating NN outputs).  

Multi-layer perceptrons (MLP) are a generic tool for approximating such mappings 

(Krasnopolsky, 2013).  The simplest MLP NN analytical approximations use a family of 

functions like: 

                                                                                                          (2) 

 

where 

                                                                     

Here, tj is a “neuron”, xi and yq are components of the input and output vectors X and Y, 

respectively, a and b are fitting parameters (NN weights).  In the majority of NN applications 

the hyperbolic tangent is used as activation function φ .  In which case, Equation (2) becomes,    

    (1) 
 mn YXXMY ℜ∈ℜ∈= ,);(

)(
1

0 ∑
=

⋅+=
n

i
ijijj xbbt φ

∑
=

=⋅+==
k

j
jqjqq mqtaabaXNNy

1
0 ,...,2,1;),,(



13 
 

∑ ∑
= =

=⋅+⋅+=
k

j

n

i
ijijqjqq mqxbbaay

1 1
00 ,,2,1);tanh( 2                               (3) 

In this study, Equation (3) is used for development. Equation (2 or 3) is also a mapping, which 

is represented symbolically as Y = NN(X).  shown (Hsieh 2009 and Krasnopolsky 2013) that the 

simplest MLP (family of functions), Equation (3), can approximate any continuous, or almost 

continuous (with final discontinuities), mapping. 

Neural networks employ adaptive weights (a and b), tuned through training with past data sets, 

to provide robustness with respect to random noise and fault-tolerance; thus, data sets are 

required to train, test, and validate the NN (Eq. 3).  To train the NN, an error function (E) is 

created and minimized to find an optimal set of coefficients (aij and bij).  

where N is the number of records in the training set. While neural network training is a 

complicated and time-consuming nonlinear optimization task, the NN training needs to be done 

only once for a particular application.  Then, the trained NN can be repeatedly applied to new 

input data providing accurate and fast emulations.  To retain the required accuracy, however, 

retraining may be required periodically.  Neural networks are well-suited for parallel and vector 

processing. 

In many practical applications (and in the application considered in this work) the mapping (1) 

contains an internal source of stochasticity, which may be due to:  (i) errors in the data used to 

define the mapping, (ii) incomplete information presented to the NN by the input vector X 

(insufficient dimensionality of this vector, e.g., when some important physical parameters 
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necessary for defining the mapping are not included), (iii) using training data with resolution 

too low to completely resolve the physical processes that define the mapping, etc.  Therefore, in 

this case, the symbolic representation (1) can be modified to specifically address such 

uncertainty, 

     ),( εXMY =                                                                   (5) 

where ε is a vector stochastic variable explicitly reflecting the stochastic nature of the mapping, 

i.e. the mapping uncertainty.  Assuming that the stochastic part of the mapping is additive, 

representation (5) can be simplified to 

ε+= )(XMY                                                               (6) 

It is noteworthy that the uncertainty ε is an inherently informative part of the stochastic 

mapping, containing important statistical information.  Actually, the stochastic mapping is a 

family of mappings having a distribution function. The range and shape of the distribution 

function are determined by the uncertainty vector ε.  Therefore, for stochastic mapping (6), 

the training criterion should be modified as              

2

1

2)]([1 ε≤−= ∑
=

N

i
ii XNNY

N
E                                                        (7) 

Thus, any NN that approximates the stochastic mapping (6) with the accuracy better than the 

uncertainty, ε, approximates one of the members of the family of the functions, comprising the 

stochastic mapping (6).  Accordingly, a single NN does not adequately approximate a stochastic 

mapping; however, an ensemble of NNs, with all NN ensemble members satisfying the 

condition (7), provides an adequate approximation for the stochastic mapping (6).  Several 

different approaches can be used to generate an ensemble of NNs that emulates the stochastic 

mapping (6).  In this work, the ensemble is generated by giving each NN ensemble member 
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slightly different initialization of NN weights, aij and bij, with which to start NN training.  The 

NN ensemble members thereby correspond to different local minima of the error function (4), 

with all members satisfying the condition (7).  

The NN Jacobian is used for evaluating sensitivities, i.e., for initial evaluation of the 

contributions (relative importance) of the various input variables (vector X) to the output vector 

Y.  The NN Jacobian, J, is an m×n matrix of the first derivatives of the NN outputs over the 

inputs,  

mq

nii

q

x
y

J
,...,1

,..,1

=

=


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
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


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Formally speaking, the Jacobian of MLP NN (2, 3) easily can be calculated using direct 

differentiation, 

                                                             ∑
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However, a calculation of derivatives of any statistical model (including NN) is an ill-posed 

problem (Krasnopolsky 2013) which should be regularized.  As shown by Krasnopolsky (2007), 

the problem can be solved using an NN ensemble and calculating the Jacobian as an average of 

the Jacobians of the NN ensemble members; the approach used here. 

II.2  Formulation of the problem  

Ocean color parameters (chlorophyll-a/K490/KPAR) are biological, with magnitudes resulting 

from chains of biological processes that occur at different spatial and temporal scales within the 

ocean’s upper layers.  The physical parameters characterizing the state of the ocean surface and 

upper mixed layer (SST, SSS, SSH, near-surface salinity, and near-surface temperature) 

constitute the active physical background for these biological processes. Thus, the variability of 
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the physical background’s spatial and temporal scales is responsible for a significant part of 

variability of the biological parameters.  Accordingly, we consider the OC, Y, (the single 

parameter chlorophyll-a or a vector of parameters chlorophyll-a/Kd490/KdPAR) to be a function, 

or mapping, of a vector of the ocean surface and upper-mixed-layer state variables, vector X.  

This function is expected to be a complex nonlinear function because the variability of physical 

parameters is transferred into the variability of the OC through a complex hierarchy of physical, 

chemical, and biological processes.  Also, in reality, both the OC data and the ocean state 

variables have finite spatial resolution (due to gridding).  The physical and biological 

variabilities on scales finer than this resolution manifest as stochastic contributions to the OC, Y.  

Thus, the mapping between the OC, Y, and physical ocean variables, X, is a complex, nonlinear 

stochastic mapping (6).  A stochastic variable ε represents the uncertainty introduced into the 

OC, Y, from unaccounted small (subgrid) scale variability of physical, chemical, and biological 

processes.  The variables, constituting vectors Y and X, contain observations, which have 

differing levels of noise that also contribute to the stochastic variable ε.   

As previously shown, a single NN does not provide an adequate emulation/approximation of a 

stochastic mapping (6).  To effectively account for subgrid scale effects and to reduce the 

impact of noise in NN simulated data (e.g., the Chl-a concentration), an ensemble of NNs has 

been trained, using criterion (7), with the average of this ensemble serving as the simulated OC, 

Y.  The Jacobian of each NN ensemble member was calculated using eq. (9) and then averaged 

to calculate the mean Jacobian (used in the sensitivity study below), improving the stability of 

the NN Jacobian.   
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II.3 Selecting NN inputs and outputs  

Selecting an emulating NN architecture includes selecting n NN inputs, m NN outputs, and the 

number of hidden neurons, k.  For this study, just one output – chlorophyll-a concentration was 

selected.  The vector of inputs, X, was composed of two parts X = { ba, }, where b  is a vector 

of physical parameters – sea-surface height (SSH), sea-surface salinity (SSS), sea-surface 

temperature (SST) and ARGO profiles of salinity (sal) and temperature (temp): 

 },,,,{ tempsalSSTSSSSSHb =                                        (10) 

   and a   is a vector of auxiliary or meta variables or tracers: 

,
366

2);sin(),cos(),sin(),cos(),sin(,{ therelatlonlonyra ⋅== πttt                       (11) 

where yr is the year, t is a day of the year, and lon and lat are longitude and latitude 

respectively.  These data are included in the input vector, X, because for the NN is trained and 

applied globally over interannual periods.   

For this study, input vector, X, defined by (10) and (11), comprises, for a , all variables 

identified in (11) and, for b , three surface parameters addressed with satellite measurements 

and seven near-surface layers of sal and temp from the top-75 meters of ARGO profiles. These 

input vector X parameters and their units, as well as the single output parameter, Y, are 

described in Table 1.  All of the NNs for emulating OC mapping have 23 inputs and 1 output.  

Each NN (single instantiation or ensemble member) is trained to produce a simulated value of 

OC (Chl-a) for each grid point (latitude, longitude) based on the information available for that 

grid point.  A global field of OC (Chl-a) is produced by sequencing through the grid points.   
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Table 1.    A Table of Emulating Neural Network Inputs and Outputs 

Input # Variable Units Input Size 

1 Year  yr 1 

2 
 Day of the year  

 
1 

3 
 Day of the year   1 

4 Longitude   1 

5 Longitude   1 

6 Latitude   1 

7 Sea surface height [ SSH ] m SSH 1 

8 Sea surface salinity [ SSS ] PSS SSS 1 

9 Sea surface temperature [ SST ] °C SST 1 

10 - 16 ARGO salinity  [ S(z) ] PSS sal 7 

17 - 23    ARGO temperature [ T(z) ] °C temp 7 

Total All Inputs   23 

Output # Variable Units Output Size 

1 Chlorophyll-a Mg/m3 Chl-a 1 

 

This study determines an optimal set of inputs, the parameters included in (11) and the number 

of near-surface layers from ARGO profiles included in (10).  Approximation accuracy and the 

correlation coefficient between NN-generated and observed OC are used as significant 

indicators of each input’s importance. 
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III. Data  

III.1  Raw data 

Chlorophyll-a concentration fields from the JPSS VIIRS provide the ocean color reference data 

for training the neural networks in this study.  Daily VIIRS chlorophyll-a global fields are 

compiled and interpolated from NASA’s  native 9-km resolution to a 1-degree latitude-

longitude global grid.  Figure 2 depicts the variability of the VIIRS chlorophyll-a fields.  

 
Figure 2. Root-Mean-Square Variability of VIIRS Chlorophyll-a (mg/m3) for 2012-2014. 

The ARGO program, a collaborative international partnership program, provides upper-ocean 

temperature, salinity, and currents in the Earth's oceans.  Global monthly-means ARGO data 

interpolated to daily values (Lebedev, et al., 2010) from the International Pacific Research 

Center in Hawaii provide gridded (1-degree by 1-degree resolution) temperature and salinity 

profiles of the ocean’s top 75m.  Daily global satellite SSH data, interpolated to a 1-degree by 

1-degree grid, were obtained from NOAA (Leuliette et al., 2004).  Daily global satellite SST, 
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interpolated to a 1-degree by 1-degree grid, were also obtained from NOAA (Reynolds et al., 

2007).  Satellite SSS fields, composited daily on 1-degree by 1-degree global grid were obtained 

from NASA’s Aquarius mission (NASA JPL-PO.DAAC, Aquarius User Guide, V3, 2014; Tang 

et al., 2014).  These well-documented observations, available or soon to be available in near-

real time, have been interpolated to the same global one-degree latitude-longitude grid with 

daily temporal resolution for the period from 2012 to 2014. 

III.2  Data for NN training and validation 

For NN training and validation, the first two years (2012-2013; 730 days) of daily data 

(approximately 20,000,000 grid point records) was selected for NN training and test.  These 

data were split into training and test sets (approximately 10,000,000 grid point records each).  

Every second data record was selected for training, with those not selected being designated for 

testing.  Each record comprises two vectors, input vector X (10, 11) and output vector Y (scalar) 

at each grid location and particular time (day).  The 2014 data (365 days) were held for set for 

validating the trained NNs and estimating NN prediction (generalization) capability.  For better 

understanding the generalization ability of the OC NN emulation, we also partitioned our data 

such that the 2012 data were selected for training and test sets (~ 5,000,000 grid records each), 

leaving both the 2013 and 2014 data for validation. 

IV. Results 
IV.1 The accuracy of approximation 
Using the early-stopping method, this study explores the “optimal” architecture for the 

emulating NN, evaluates the level of uncertainty in the data, and compares performance of the 

single NN and NN ensemble. 
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IV.1.1 Selecting the number of hidden neurons  
To evaluate the “optimal” size of the hidden layer, i.e., k, in eq. (2), a set of ten NNs, having the 

23 inputs and one output identified above, were trained with k varying from 3 to 45.  Figure 3 

depicts the NN chlorophyll-a root-mean-square error (RMSE) with respect to the independent 

observations test set as a function of the number of hidden neurons, k.  Figure 3 leads to the 

conclusion that k = 30 is an “optimal” number of hidden neurons, because this number provides 

the “best” approximation, the least RMS error, for this study’s training and test sets.  For k > 30, 

the NN fits to the noise in the data; thus, at least in this case, the RMSE also provides an 

estimate for the uncertainty, ε, in (6).  Figure 3 indicates that ε is of order of 0.2 mg/m3.  This 

method of selecting the “optimal” size of the hidden layer is called the early-stopping method 

(Haykin 1994).  With these considerations, k = 30 was selected for the NNs used in this study.  

Consequently, the single NNs and NN ensemble members trained and used in this study have 

the same architecture: 23 inputs, 30 hidden neurons, and 1 output.   

  

 
Figure 3. Neural Network chlorophyll-a root-mean-square error (RMSE; mg/m3) versus the 
number of hidden neurons, k in Eqn (2).  
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IV.1.2 Estimating the value of the uncertainty   
The NN RMSE has several components and can be written as, 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  𝜀𝜀𝑎𝑎𝑎𝑎𝑎𝑎 +  𝜀𝜀                                                                      (12) 

where εapp is the approximation accuracy of NN per se and ε is the uncertainty due to unresolved 

fine-scale processes, subgrid variability, and observation errors.  To better estimate the 

approximation accuracy obtained above (ε < 0.2 mg/m3) for the NN simulating OC values, a 

NN was trained using the same number of hidden neurons (k = 30) and the same Chl-a output, 

but with only one input:  the same values as the output (Chl-a), in other words, a NN emulating  

 

the identity mapping.  The output-minus-input statistics for this identity-mapping NN (Table 2,  

 

row 1) represent the approximation error, per se, and is of order of 0.002 mg/m3, a very small 

portion of the RMS error.  If Chl-a is added as an input to the previously selected 23 inputs 

(Table 2, row 4), the RMSE and correlation coefficient does not change significantly from the  

 

base configuration ((Table 2, row 2).  Thus, the RMSE predominantly represents the uncertainty 

(approximately 0.18 mg/m3) in the baseline 23 inputs due to subgrid processes and observation 

noise (Table 2, row 2).  Employing a NN ensemble does not change the estimate (Table 2, row 

3). 

Table 2. Independent Test of Approximation Accuracy (9,209,545 records) 
 Type of NN Bias RMSE CC 
1 1:30:1,  (εapp) 4.e-5 2.e-3 1.00 
2 23:30:1 -4.e-2 1.76e-1 0.67 
3 Ensemble 6 NNs (23:30:1) -2.e-2 1.72e-1 0.67 
4 24:30:1 -4.e-2 1.73e-1 0.68 
5 23:30:1 (Chl-a ≤ 1.) -2.e-2 1.11e-1 0.72 
6 Ensemble (23:30:1) (Chl-a ≤ 1.) -2.e-2 9.1e-2 0.79 
7 24:30:1 (Chl-a ≤ 1.) -3.e-2 1.02e-1 0.77 
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Figure 4.  RMSE (black) and percentage (divided by 10) of data (red) as functions of Chl-a 
concentration.  Vertical line shows Chl-a concentration = 1. mg/m3. 

It is clear, from physical considerations and from Figure 4, that the level of observation noise 

(errors) and subgrid uncertainty is higher at the higher values of Chl-a concentrations that are 

found mainly in coastal areas and are due to local subgrid processes.  Likewise, the satellite 

observation errors are higher here for the accuracy of the retrieval algorithm is lower at higher 

levels of OC because there are only a few in situ observations available for the algorithm 

development here.   

IV.1.3 Bias and RMSE  
Less than one percent of the grid points in the data sets used in this study have a Chl-a 

concentration greater than 1.0 mg/m3 (Fig.4); therefore, an insufficient data exists to train NNs 

with adequate accuracy at greater concentrations of Chl-a.  Accordingly, while the NNs are 

trained, using the full data set; results are presented for both the full range of OC values and, 

when appropriate, for the case where Chl-a concentration greater than 1.0 mg/m3 have been 

removed.  Table 2, rows 5 through 7,  show error statistics and correlation coefficients for the 

NN cases presented in rows 2 to 4, but with data points with Chl-a concentrations exceeding 1.0 
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mg/m3 removed.  When excluding the estimations for Chl-a concentration exceeding 1.0 mg/m3, 

the uncertainty is significantly reduced (from order 0.17 mg/m3 to order 0.1 mg/m3) and the 

correlation between NN-simulated and observed OC is notably higher.  Additionally, Table 2 

highlights the significant improvement from using and NN ensemble (row 6) versus a single NN 

(row 5). 

 

Figure 5.  Binned scatter plot of NN simulated values versus observed data; bars show the 
standard deviation of the data within each bin. 

Figure 5 shows the binned scatter plot, for Chl-a concentrations not exceeding 1.0 mg/m3, of 

NN-simulated values versus observed Chl-a concentrations.  Figure 6 similarly, shows the 

binned dependence of NN error (bias) on the magnitude of Chl-a concentration.  For both 

figures, the bars show the standard deviation within each bin, reflecting the level of noise in the 

data.  Figure 6 depicts a small NN negative bias for Chl-a concentrations less than 0.5 mg/m3, 

with NN positive bias for Chl-a concentrations  exceeding 0.5 mg/m3; however, the magnitudes 

of these biases are of order of the level of the noise in the data. 
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Figure 6.  Binned dependence of approximation error (bias) on the value of OC; bars show the 
standard deviation in each bin.  They reflect the level of noise in the data. 
 

IV.1.4 Performance of NN ensemble  
Finally, we trained an NN ensemble consisting of six NNs ensemble members.  All six 

ensemble members have the same architecture 23:30:1; they were trained using different initial 

values for NN weights, aij and bij, in (3).  Thus, different NN ensemble members correspond to 

different local minima of the error function (7).  All NN ensemble members were trained on full 

NN training set.  The ensemble members and the ensemble average performances are shown in 

Table 3 for Chl-a concentration  ≤ 1. mg/m3.  
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 Table 3. Performances of NN ensemble members and NN ensemble for Chl-a 
concentration  ≤ 1. mg/m3.  

Ensemble Member # RMSE (mg/m3) Correlation Coefficient 

1 0.11 0.722 

2 0.093 0.766 

3 0.097 0.757 

4 0.097 0.757 

5 0.094 0.758 

6 0.094 0.758 

       Ensemble Mean 0.091 0.792 

 

Table 3 shows that the ensemble mean has higher cross-correlation between the NN member 

estimated values and VIIRS observations, as well as lower RMSE than any of the individual 

ensemble members. The ensemble mean clearly outperforms each of the individual ensemble 

members, suggesting that random noise may be contaminating the input and/or the validation 

observation data. 

IV.2  Evaluation of NN prediction 

IV.2.1 Prediction accuracy  

The 365 days of 2014 were used as an independent data set for validating the trained NNs.  The 

trained NNs and the NN ensemble were applied to these data to produce Chl-a fields.  Statistics 

were calculated comparing the NN fields to observed VIIRS Chl-a fields.  Figure 7 presents NN 

global men RMSE time series, depicting the time series for a single NN with dashed lines and 

NN ensembles with solid lines.  This figure supports the conclusion that the major contributors 

of noise in the VIIRS Chl-a data are those data with Chl-a concentrations exceeding 1.0 mg/m3.   
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Figure 7.  Neural network chlorophyll-a global mean RMSE time series:  BLACK – full data 
set; RED – Chl-a values exceeding 1.0 mg/m3 removed (less than 1% of data removed); SOLID 
lines indicate ensemble means and DASHED lines represent the mean for a single NN. 
 
 

These data points, representing less than 1% of the entire data set, may create problems for 

retrieval algorithm development and make training NN for Chl-a concentrations greater than 1.0 

mg/m3difficult.  The very-small mean bias seen in Figure 8 is below our estimate for the level of 

noise in the data (Table 2, row 7).  The global mean bias for a single-NN (Figure 8) depicts a 

clear seasonal cycle, with positive values during the boreal winter and negative values during 

the austral winter. 
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Figure 8. Neural network chlorophyll-a global mean bias time series, referenced to VIIRS 
observations (VIIRS – NN values):  BLACK – full data set; RED – Chl-a values exceeding 1.0 
mg/m3 removed (less than 1% of data removed); SOLID lines indicate ensemble means and 
DASHED lines represent the mean for a single NN. 
 

     

 
 
Figure 9.  Global bias (Chl-a  > 1 mg/m3 removed) for a single NN (left) and for the ensemble 
mean (right). 
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Figure 10.  RMS variability of the neural network chlorophyll-a (Chl-a > 1. mg/m3 removed)  
for a single NN (left) and for the ensemble mean (right). 

 

The spatial pattern of bias (NN minus VIIRS)  shown in Figure 9 has large values in high 

latitudes and in shallow waters, i.e., over continental shelves and in coastal regions, etc.  For the 

ensemble mean, the overall error is small (< 0.1 mg/m3) for most of the year; however, since the 

signal is small, the error to variability ratio is low only in the center of the major ocean gyres 

(not shown).  

 

 
 
Figure 11.  Variability ratio in percent:  neural network chlorophyll-a variability (Chl-a > 1 
mg/m3 removed) divided by variability of VIIRS observations  for a single NN (left) and for the 
ensemble mean (right). 
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Figure 11 portrays that the NN method successfully captures chlorophyll-a variability in the 

VIIRS observations.  The single NN estimates are over-energetic with respect to VIIRS 

observations, while the ensemble mean has approximately the same level of variability as the 

VIIRS observations. Typically, the NN is over-energetic compared to the VIIRS observations in 

the oligotrophic subtropics, where the mean Chl-a values are very low. In these regions, the 

signal-to-error ratio is low, and the NN technique has difficulty in reproducing the observed 

variability. We hypothesize that it may be necessary to retrain a different set of NNs specifically 

for these regions where the observed variability of Chl-a is weak. This task is beyond the scope 

of this preliminary study and will be taken up later.  It is clear that random error contaminates 

the Chl-a observations and inputs and the NN ensemble is able to remove some of these errors. 

Collectively, Figures 7 through 11 demonstrate that the  NN ensemble significantly outperforms 

a single NN. 

 

The mean cross-correlation (CC) of neural network estimates with VIIRS observations (Figure 

12) is relatively stable and high throughout the validation period (~ 0.8), which is reassuring.  

The CC is lower and more variable for the case where all data points are retained, suggesting 

that the few data points with Chl-a concentrations exceeding 1 mg/m3 are responsible for 

notably degrading NN performance.  The NN has difficulty in certain regions, possibly due to 

inadequate sampling of the inputs (SST, SSS, T, and S) in regions with large spatial gradients 

and, especially, notable temporal variability in VIIRS-observed Chl-a values.  The ensemble 

mean has higher CC with VIIRS observations than does a single NN (Figure 13), predominantly 

in the mid-latitude North Pacific and North Atlantic oceans. 
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Figure 12.  Neural network chlorophyll-a cross-correlation with VIIRS observations:  BLACK 
– full data set; RED – Chl-a values exceeding 1.0 mg/m3 removed (less than 1% of data 
removed); SOLID lines indicate ensemble means and DASHED lines represent the mean for a 
single NN. 
 
 
 

  
 

 
 
 
Figure 13. Spatial plot of global cross-correlation (Chl-a > 1mg/m3 removed) in percent for 
ensemble mean (left )and cross-correlation difference between ensemble mean and single NN 
(right). 
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IV.2.2 Preliminary evaluation of NN sensitivity 
 

 

Figure 14.  Linearized estimates, employing the neural network Jacobian, of the contributions 
from the various input parameters (latitude, daily SSH, daily SSS, daily SST, monthly ARGO 
surface and subsurface temperature and salinity) to the neural network output. 
 

The NN Jacobian enables an initial evaluation of the sensitivity of the output chlorophyll-a 

vector, Y, to the contribution of the various parameters included in the input vector X, i.e., the 

relative importance of the input parameters.  After calculating the NN Jacobian (Eqn. 9) for 

each NN ensemble member; the mean Jacobian was calculated.  Figure 14 plots the absolute 

value for each component of the mean NN Jacobian vector, providing a linear approximation of 

the importance of each NN input parameter.  Figure 14 demonstrates that the most important 

input parameter is SST, followed by the ARGO salinity fields for the surface and 

subsurface.  ARGO “surface” observations of temperature and satellite sea-surface salinity are 

less important than those at greater depth, likely because satellite SST and ARGO surface 

salinity already capture portions of the surface variability of temperature and salinity, 

respectively.   
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V. Discussion and Conclusions 
This study introduced a new neural-network-based approach for relating a biological parameter, 

chlorophyll-a concentration, to physical processes of the upper ocean.  This NN maps satellite-

derived surface variables (SST, SSH, and SSS fields), along with ARGO in situ salinity and 

temperature near-surface profiles), to the Chl-a concentration, effectively establishing a NN-

based empirical (statistical) biological model for Chl-a. Chlorophyll-a (an ocean color field) 

from NOAA’s operational VIIRS, and NOAA SSH and SST fields and NASA Aquarius 

mission SSS fields, spatially and temporally averaged to daily gridded (1° ×  1° 

latitude/longitude) fields, were used for the NN training.  The NNs were trained using data for 

two years (2012-2013) and tested on the remaining year (2014).  Results were assessed using 

the mean error (bias), RMSE, and cross-correlations between NN generated Chl-a values and 

observations.  An ensemble of NNs with different weights was employed to reduce the impact 

of the noise in the data and to calculate the NN Jacobian for sensitivity studies,  

Coarse spatial and temporal data resolution limits the features that can be observed in NN-

generated Chl-a fields.  As shown, global and mesoscale features are represented sufficiently 

well in the NN-estimated Chl-a fields; however, in order to generate finer-scale features, the NN 

needs to be trained on data with finer resolutions. 

This study demonstrates that the NN technique provides an accurate, computationally cheap 

method for filling spatial and temporal gaps in satellite observation fields and time series.  It is 

noteworthy that a single NN (or a single NN ensemble) is capable of generating OC fields on 

the entire global grid.  The accuracy of NN prediction did not deteriorate during the validation 

period, performing well during the entire year (2014).  These results demonstrate significant NN 

ability in terms of spatial and temporal generalization. 
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The tested method accurately estimates the seasonal cycle and large-scale spatial patterns in 

VIIRS Chl-a fields, best reproducing VIIRS Chl-a variability in the mid-latitudes of the major 

ocean gyres.  The largest errors are found in areas where spatial scales of variability are small 

and the variability is large, e.g., continental shelves, coastal regions, marginal seas, etc.  In these 

regions, VIIRS Chl-a variability is high and the Chl-a and other satellite-derived data have the 

highest levels of noise.  Thus, removing data points where Chl-a exceeds 1.0 mg/m3 (less than 

1% of points) improves NN performance through the reduction of noise in input and output 

data.  Disregarding the noisiness of the data in these regions, the amount of data in these regions 

is very small and not sufficient for NN training here. 

The NN approach successfully eliminates the systematic component of the noise (bias).  For 

reducing the random component of the noise, an NN ensemble was trained.  As shown, the 

ensemble mean outperforms each of the ensemble members. Clearly, random noise must be 

contaminating the observation data streams.   

The mean Jacobian of the NNs was used to evaluate the relative importance of NN inputs.  The 

results show that daily SST is the most important input, closely followed by ARGO monthly 

near-surface salinity profiles. The ARGO monthly temperature near-surface signal moderately 

contributes to NN performance. 

The vision, supported by this study, is a weighted blend of NN estimates and NRT VIIRS data 

for ocean model initialization and assimilation for: 

• nowcasts and one-to-two week ocean forecasts by NOAA’s operational RTOFS, and  

• reanalysis, establishing the best ocean initial conditions with NOAA’s operational 

seasonal-interannual CFSR/GODAS.   
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These VIIRS-based NN OC analyses and predictions will be assimilated when computing NRT 

and extended (three- to four-week) ocean and coupled weather forecasts.  The concept is to 

retain high-frequency small-scale information using the VIIRS observations while ensuring the 

inclusion of the low-frequency large-scale information in the NN estimates.  This blending 

methodology will allows the creation of a consistent time series that spans multiple satellite 

missions.  The NRT VIIRS data stream will serves two purposes:  1) creation of a blended 

analysis for use by the ocean and biogeochemical models and 2) update training for the NN on a 

periodic basis. NN skill will improve by: 1) optimizing NN inputs, 2) retraining NN with 

accumulated new data, 3) introducing additional information (additional NN inputs and 

outputs), and 4) finer resolutions (better than 1°x 1° latitude/longitude) for both inputs and 

outputs. 

Our future plans include investigation of the following topics: 

1. Is the particular set of chosen physical input parameters minimal for all areas of the 

World  Oceans?  

2. Is there a reason to include incoming SWR as an input parameter of interest?   

3. Does it make sense to derive simultaneously of all three OC parameters (Chl-a, Kpar, 

and K950).  
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